4,607 research outputs found

    Strong mobility degradation in ideal graphene nanoribbons due to phonon scattering

    Full text link
    We investigate the low-field phonon-limited mobility in armchair graphene nanoribbons (GNRs) using full-band electron and phonon dispersion relations. We show that lateral confinement suppresses the intrinsic mobility of GNRs to values typical of common bulk semiconductors, and very far from the impressive experiments on 2D graphene. Suspended GNRs with a width of 1 nm exhibit a mobility close to 500 cm^2/Vs at room temperature, whereas if the same GNRs are deposited on HfO2 mobility is further reduced to about 60 cm^2/Vs due to surface phonons. We also show the occurrence of polaron formation, leading to band gap renormalization of ~118 meV for 1 nm-wide armchair GNRs.Comment: 11 pages, 4 figure

    Visually induced analgesia: seeing the body reduces pain

    Get PDF
    Given previous reports of strong interactions between vision and somatic senses, we investigated whether vision of the body modulates pain perception. Participants looked into a mirror aligned with their body midline at either the reflection of their own left hand (creating the illusion that they were looking directly at their own right hand) or the reflection of a neutral object. We induced pain using an infrared laser and recorded nociceptive laser-evoked potentials (LEPs). We also collected subjective ratings of pain intensity and unpleasantness. Vision of the body produced clear analgesic effects on both subjective ratings of pain and the N2/P2 complex of LEPs. Similar results were found during direct vision of the hand, without the mirror. Furthermore, these effects were specific to vision of one’s own hand and were absent when viewing another person’s hand. These results demonstrate a novel analgesic effect of non-informative vision of the body

    Black strings in (4+1)-dimensional Einstein-Yang-Mills theory

    Full text link
    We study two classes of static uniform black string solutions in a (4+1)-dimensional SU(2) Einstein-Yang-Mills model. These configurations possess a regular event horizon and corresponds in a 4-dimensional picture to axially symmetric black hole solutions in an Einstein-Yang-Mills-Higgs-U(1)-dilaton theory. In this approach, one set of solutions possesses a nonzero magnetic charge, while the other solutions represent black holes located in between a monopole-antimonopole pair. A detailed analysis of the solutions' properties is presented, the domain of existence of the black strings being determined. New four dimensional solutions are found by boosting the five dimensional configurations. We also present an argument for the non-existence of finite mass hyperspherically symmetric black holes in SU(2) Einstein-Yang-Mills theory.Comment: 19 Revtex pages, 27 eps-figures; discussion on rotating black holes modifie

    A stability criterion for energetic particle-Alfven modes

    Get PDF

    Elliptically induced Alfven eigenmodes

    Get PDF

    Rotating Boson Stars in 5 Dimensions

    Full text link
    We study rotating boson stars in five spacetime dimensions. The boson fields consist of a complex doublet scalar field. Considering boson stars rotating in two orthogonal planes with both angular momenta of equal magnitude, a special ansatz for the boson field and the metric allows for solutions with nontrivial dependence on the radial coordinate only. The charge of the scalar field equals the sum of the angular momenta. The rotating boson stars are globally regular and asymptotically flat. For our choice of a sixtic potential the rotating boson star solutions possess a flat spacetime limit. We study the solutions in flat and curved spacetime.Comment: 17 pages, 6 figure

    A General Formulation of MHD Stability Including Flow and a Resistive Wall

    Get PDF

    Hard real-time performances in multiprocessor-embedded systems using ASMP-Linux

    Get PDF
    Multiprocessor systems, especially those based on multicore or multithreaded processors, and new operating system architectures can satisfy the ever increasing computational requirements of embedded systems.ASMP-LINUX is a modified, high responsiveness, open-source hard real-time operating system for multiprocessorsystems capable of providing high real-time performance while maintaining the code simple and not impacting on theperformances of the rest of the system. Moreover, ASMP-LINUX does not require code changing or application recompiling/relinking.In order to assess the performances of ASMP-LINUX, benchmarks have been performed on several hardware platformsand configurations
    • …
    corecore